

Treatment of neonatal seizures

Ronit Pressler

Institute of Child Health UCL & Great Ormond Street Hospital, Uł

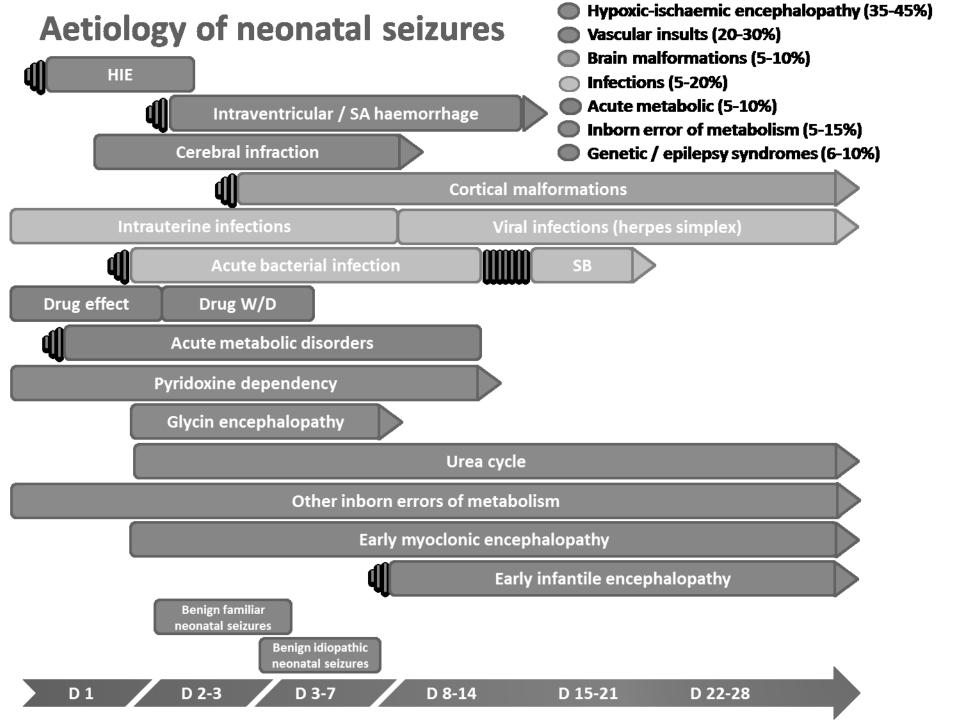
Are relatively common

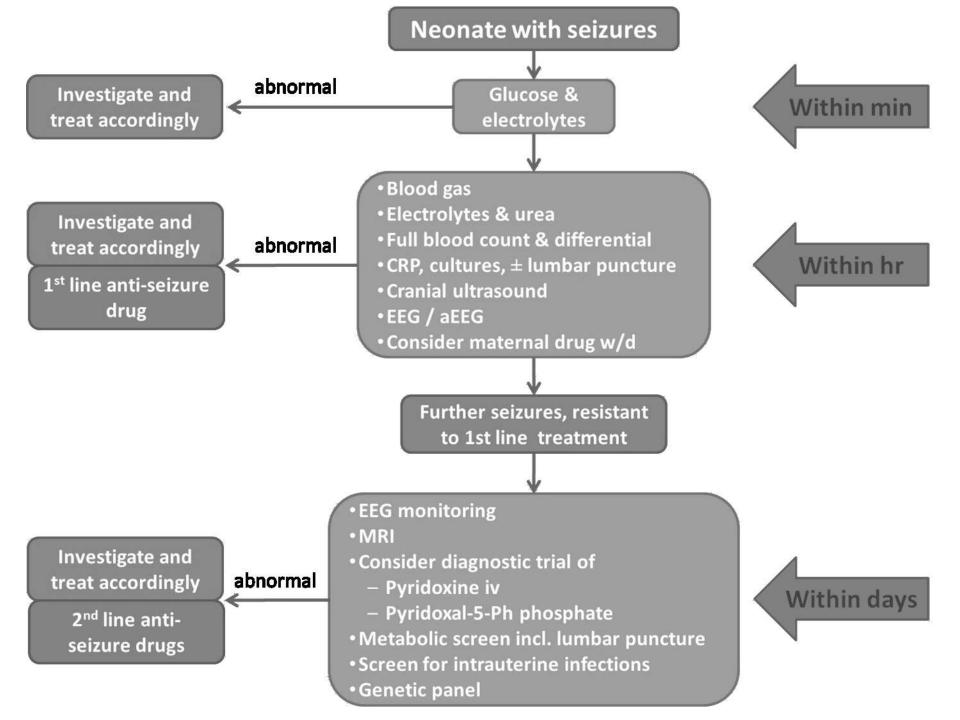
(1-3.5 per thousand births)

(Ronnen et al 1999; Berg et al 2012)

Clinical seizures are tip of the ice berg

(Mizrahi and Kellaway1989 Lawrence et al 2009)

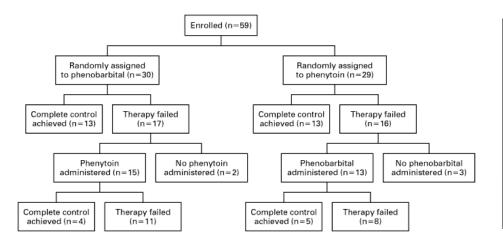

Treatment is challenging


(Painter et al 1999; Boylan et al 2003; Pressler & Mangum 2013)

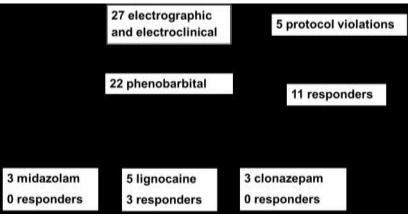
Multidisciplinary approach needed

Current clinical practice

1 st Author	Year	Area	Population			Ast II.o. AFD
			babies	hospital	doctors	1 st line AED
Carmo	2005	Au/Nz			87	95% PB*
Bartha	2007	US		7		82% PB
Bassan	2008	Israel			102	86% PB
Blume	2008	US	6099	31		76% PB
Vento	2010	EU		13		100% PB
Wickstrom	2012	Sw			170	185-100% PB


Choice of 2nd line AED variable between and within continents

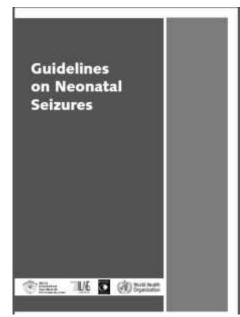
* PB: Phenobarbital


Evidence based treatment

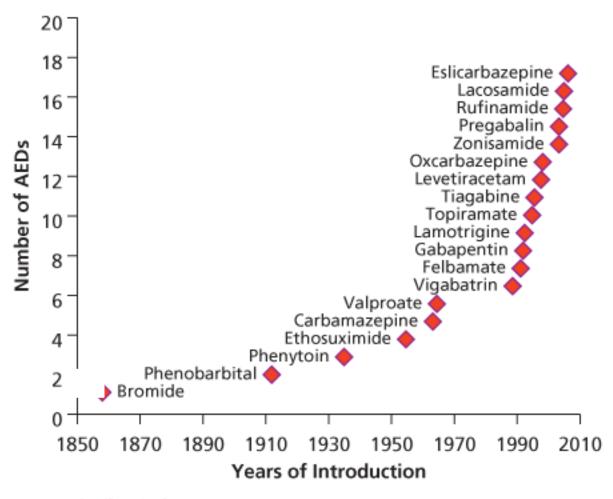
- Cochrane Report (Booth and Evans 2004)
 - Reduction of seizure frequency
 - Reduced mortality / long-term disability
 - Only 2 RCT with adequate outcome measures (EEG)

Painter et al NEJM 1999

Boylan et al Neurology 2004:



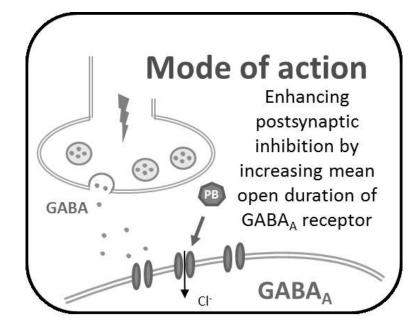
Evidence based treatment


- Cochrane Report (Booth and Evans 2004)
 - Reduction of seizure frequency
 - Reduced mortality / long-term disability
 - Only 2 RCT with adequate outcome measures (EEG)
 - Painter et al NEJM 1999:
 PB vs PHT, 50% seizure free in both arms, 60% for PB + PHT
 - Boylan et al Neurology 2004: 50% seizure free on PB, too small for evaluation of 2nd line treatment
 - Conclusion:
 Little evidence to support use of any AED

WHO Guidelines (2011)

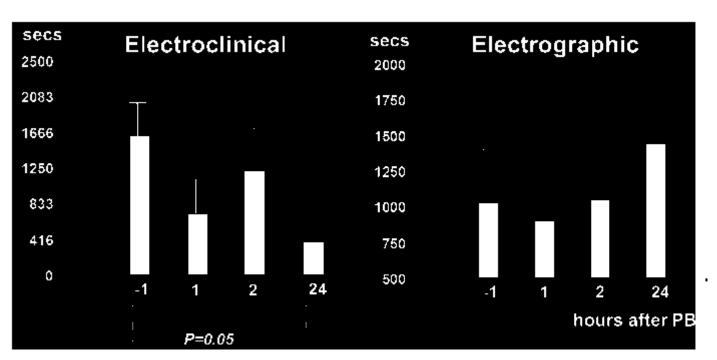
- Evidence based guidelines for management of neonatal seizures by WHO, ILAE & IBE
- Recommendations for developing countries to tertiary care centres
- 11 recommendations based on literature review
- 4 recommendations on treatment, plus one on prophylaxis

New AED in adults vs neonates



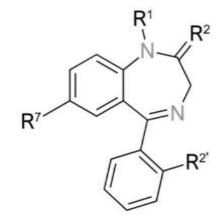
AED: antiepileptic drug.

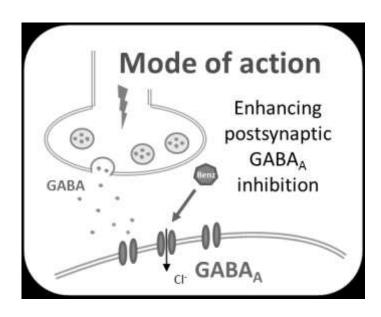
Phenobarbital


- PK data
 - Metabolism: hepatic
 - $-T_{1/2}$ 80-160 hrs
 - Drug interactions +
- Efficacy in neonates
 - First line choice
 - 2 RCTs: seizure freedom in 43-50%
 - Electro-clinical dissociation个
- Dose in neonates
 - LD: 20 mg/kg, repeat if required
 - MD: 5 mg/kg/day
- Adverse events
 - CNS sedation
 - Respiratory depression
 - Possible adverse neuro-developmental outcome

Electroclinical dissociation

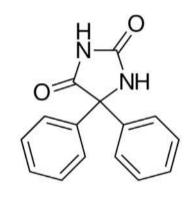
- Induced by treatment of seizures
- Described with PB and phenytoin

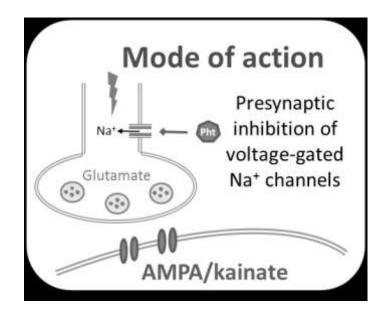

Clinical seizures are he tip of the iceberg



Boylan et al, 2003

Midazolam


- PK data
 - Rapid onset
 - Pharmacologically active metabolites
 - $-T_{1/2}$ 6-14 hrs
- Efficacy in neonates
 - Second line choice
 - Some evidence
- Dose in neonates
 - LD: 0.05 mg/kg over 10 min
 - MD: 0.15-0.5 mg/kg/h
- Adverse events
 - CNS sedation
 - Respiratory depression
 - Hypotension



Phenytoin

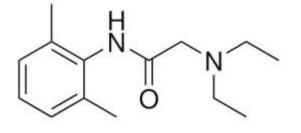
- PK data
 - T1/2: 20 hrs in 1st week,5-10 hr in week 2-4
 - Nonlinear PK
- Efficacy in neonates
 - Second line choice
 - Some evidence from 1 RCT
- Dose in neonates
 - LD: 15-20 mg/kg iv over 20 min
 - MD: 4-8 mg/kg/day
- Adverse events
 - irritation at injection site
 - CNS depression, hypotension
 - cardiac (arrhythmias, impaired conduction)
 - Increase of electro-clinical dissociation

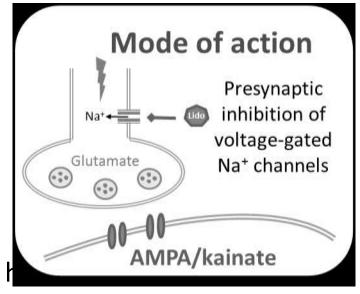
Lidocaine

PK data

- T1/2: 20 hrs in 1st week, 5-10 hr in week 2-4
- Nonlinear PK

Efficacy in neonates


- Second line choice
- Uncontrolled studies suggest efficacy
 in 60-78% as 2nd or 3rd line


Dose in neonates

- LD: 2 mg/kg
- MD: 5-7 mg/kg/h for 4 h, reduce over 24 ł
- Adapt dose for cooling (van den Broek 2013)

Adverse events

- Cardio-toxic, particularly arrhythmias
- Sedation

Hellstrom- Westas 1988 Boylan 2004, Malingre 2006, Shany 2007, Lundqvist 2013, van den Broek 2013, Weeke 2016

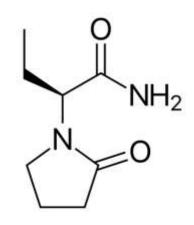
Levetiracetam

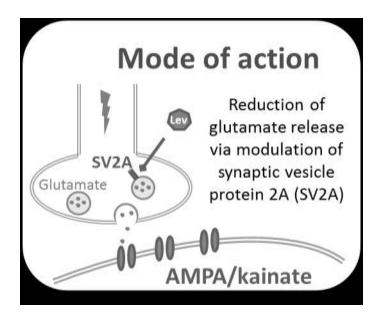
• PK data

- Metabolism: renal
- T ½ 9-18 hrs
- No drug interactions

Efficacy in neonates

- Second line choice, also 1st line (no RCT)
- Uncontrolled studies suggest good efficacy (30-86%), most no EEG

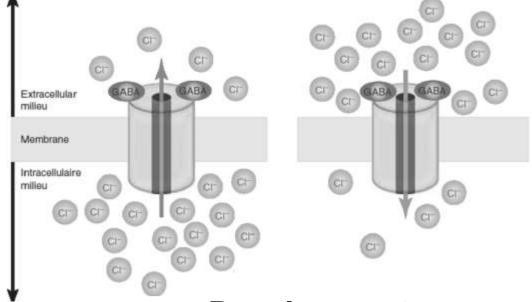

Dose in neonates


LD: 10 -50 mg/kg

MD: 40-50 mg/kg/day

Adverse events

- Mild sedation
- Possibly bradycardia

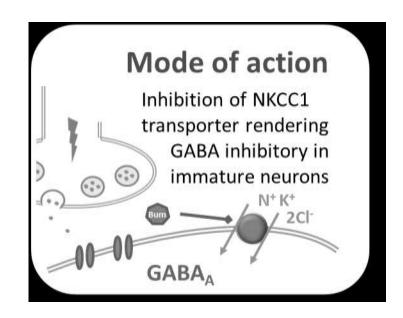


GABA

excitatory inhibitory

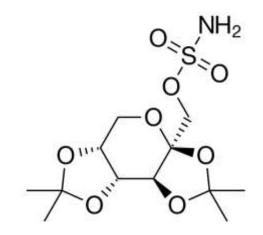
Development

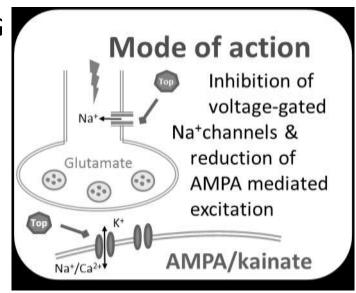
High NKCC1, low KCC2 Low Co-transporter


Adult
Low NKCC1, high KCC2

Ben-Ari 2002

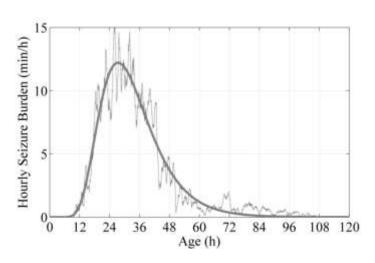
Bumetanide


- PK data
 - Metabolism: renal
 - T ½ 8-9 hrs
- Efficacy in neonates
 - No proven efficacy
- Dose in neonates
 - 0.01-0.05 mg/kg as diuretic
 - Antiseizure dose unknown
- Adverse events
 - Dehydration with hypotension
 - Hypernatremia
 - Hearing loss



Topiramate

- PK data
 - Metabolism: renal
 - T ½ 36 hrs
- Efficacy in neonates
 - Animal data:neuroprotective properties
 - Case study suggests some efficacy, no EEG
- Dose in neonates
 - No iv preperation
 - No dose availabe (5mg/kg/day)
- Adverse events
 - Lethargy, irritability, cognitive dulling anorexia, and metabolic acidosis in infants
 - Unknown in neonates



	Retrospective, studies with >10 cases	Prospective, uncontrolled or RCT, insufficient powered	RCT
Phenobarbital	Boylan 2002* Connell 1989	Bye & Flanagan 1995*	Painter 1999*
Phenytoin	Connell 1989	Bye & Flanagan 1995*	Painter 1999*
Midazolam	van Leuven 2004 Castro Conde 2005* Shany 2007 Yamamoto 2007	Boylan et al 2004*	None
Levetiracetam	Khan 2011* Ramantani 2011 Abend 2011* Venkatesan 2017	None	None
Diazepam	Connell 1989	None	None
Lorazepam	None	Maytal et al, 1991 Deshmukh et al, 1986	None
Clonazepam	Andre 1986	Bye & Flanagan 1995*	None
Lidocaine	Shany 2007 Yamamoto 2007 Lundqvist 2013 van den Broek 2013	Hellstrom- Westas 1988 Boylan 2004* Malingre 2006	None
Bumetanide	Kahle 2009	Pressler 2015*	None
Topiramate	Filippi et al 2010	None	None

Challenges of clinical trials and drug development in neonatal seizure

- Age dependent mechanisms of neurotransmitter
- Ethical predicament
 - Vulnerable age group
 - Acute symptomatic seizures critically ill, co-morbidity
- Logistical difficulties
 - Diagnosis and monitoring
 - Recruitment
 - Regulatory requirements (EMA/FDA)
- Expensive, but low return

- Should we treat subclinical seizures or only clinical?
 - Subclinical seizures associated with poor outcome (McBride 2002)
 - Treatment may improve outcome (van Rooij 2007; Glass 2009)
- Will treatment of neonatal seizures improve outcome?
 - Higher seizure burden associated with poor outcome (Kharoshankaya 2016)
- How long should we treat neonatal seizures?
 - No evidence that treatment beyond the neonatal period improves outcome (Guillet & Kwon 2007; Abend in press)

Conclusion

- Treatment of neonatal seizures has no evidence
- Phenobarbital accepted as standard of care
- No recommendations re 2nd line treament
- Off-lable use of drugs to be avoided
- More controlled trials nessesary

Acknowledgements

Neonatal Task force

- Sameer M Zuberi (Commission Chair)
- Elissa Yozawitz
- Perrine Plouin
- M Roberta Cilio
- Magda Nunes,
- Sampsa Vanhatalo
- Eli Mizrahi,
- Nico Moshe

Colleagues & fellows

- Steward Boyd
- Geraldine Boylan
- Janet Rennie
- Lorenzo Fabrizi
- Kim Whitehead
- Birgit Pimpel
- Matthias Ensslen
- Sean Matthison
- Sona Janackova

- All NEMO partners
- Neonatal team at KCH, UCC, UCLH and GOSH
- Clinical physiologist at KCH, UCLH, UCC and GOSH

